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Abstract

One of the core problems in soft computing is deal-
ing with uncertainty in data. In this paper, we
revisit the formal foundation of a class of proba-
bilistic databases with the purpose to (1) obtain
data model independence, (2) separate metadata
on uncertainty and probabilities from the raw data,
(3) better understand aggregation, and (4) create
more opportunities for optimization. The paper
presents the formal framework and validates data
model independence by showing how to a obtain
probabilistic Datalog as well as a probabilistic rela-
tional algebra by applying the framework to their
non-probabilistic counterparts. We conclude with a
discussion on the latter three goals.
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1. Introduction

One of the core problems in soft computing is dealing
with uncertainty in data. For example, many data
activities such as data cleaning, coupling, fusion,
mapping, transformation, information extraction,
etc. are about dealing with the problem of semantic
uncertainty [1, 2]. In the last decade, there has been
much attention in the database community to scal-
able manipulation of uncertain data. Probabilistic
database research produced numerous uncertainty
models and research prototypes, mostly relational;
see [3, Chp.3] for an extensive survey.

In our research we actively apply this technology
for soft computing data processing tasks such as
indeterministic deduplication [4], probabilistic XML
data integration [5], and probabilistic integration of
data about groupings [6]. Based on these experi-
ences, we find that there are still important open
problems in dealing with uncertain data and that the
available systems are inadequate on certain aspects.
We address the following four aspects.

Data model dependence Depending on the require-
ments and domain, we use different data models
such as relational, XML, and RDF. The available
models for uncertain data are tightly connected to
a particular data model resulting in a non-uniform
dealing with uncertain data as well as replication of
functionality in the various prototype systems.
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Insufficient understanding of core concepts  Un-
certainty in data has been the subject of research
in several research communities for decades. Nev-
ertheless, we believe our understanding of certain
concepts is not deep enough. For example, truth
of facts that are uncertain. Or, what are possible
worlds really? Also, many models support possible
alternatives in some way often associated with a
probability. Are these probabilities truly add-ons or
are they tightly connected to the alternatives?

Aggregates In many data processing tasks, being
able to aggregate data in multiple ways is essential.
Computing aggregates over uncertain data is, how-
ever, inherently exponential. There is much work on
approximating aggregates, often with error bounds,
but this does not seem to suffice in all cases. Fur-
thermore, systems offer operations on uncertain data
as aggregates, such as EXP (expected value) in Trio
[7]; they seem different from traditional aggregates
such as SUM, or is there a more generic concept of
aggregation that encompasses all?

Optimization opportunities There has been some
work on optimization for probabilistic databases,
for example, in the context of MayBMS/SPROUT
[8, 9], but as we experienced in [6], where we apply
MayBMS to a bio-informatics homology use case,
the research prototypes do not scale well enough
to thousands of random variables. By generaliz-
ing certain concepts in our formal foundation, we
hope to create better understanding of optimization
opportunities.

Contributions We address the above with a new
formalisation of a probabilistic database and associ-
ated notions as a result of revisiting its fundaments.
The formalization has the following properties:
e Data model independent
e Meta-data about uncertain data loosely coupled
to raw data
e Loosely coupled probabilities
e Unified view on aggregates and probabilistic
database-specific functions
We demonstrate the usefulness of the formalization
for creating more insight by discussing questions like
“What are possible worlds?”, “What is truth in an
uncertain context?”, “What are aggregates?”, and
“What optimization opportunities come to light?”.
Furthermore, we validate the data model indepen-
dence by illustrating how a probabilistic Datalog



“Paris Hilton stayed in the Paris Hilton”

phrase pos | refers to

1 | Paris Hilton | 1,2 | the person

2 | Paris Hilton | 1,2 | the hotel

3 | Paris 1 the capital of France

4 | Paris 1 Paris, Ontario, Canada

5 | Hilton 2 the hotel chain

6 | Paris Hilton | 6,7 | the person

7 | Paris Hilton | 6,7 | the hotel

8 | Paris 6 the capital of France

9 | Paris 6 Paris, Ontario, Canada
10 | Hilton 7 the hotel chain

Figure 1: Example natural language sentence with
a few candidate annotations [10].

as well as a probabilistic relational database can be
defined using our framework.

Running ezample We use natural language process-
ing as a running example, the sub-task of Named
Entity Extraction and Disambiguation (NEED) in
particular. NEED attempts to detect named en-
tities, i.e., phrases that refer to real-world ob-
jects. Natural language is ambiguous, hence the
NEED process is inherently uncertain. The ex-
ample sentence of Figure 1 illustrates this: “Paris
Hilton” may refer to a person (the American so-
cialite, television personality, model, actress, and
singer) or to the hotel in France. In the latter
case, the sub-phrase “Paris” refers to the capital
of France although there are many more places
and other entities with the name “Paris” (e.g., see
http:/ /en.wikipedia.org/wiki/Paris_ (disambiguation) or
a gazetteer like GeoNames').

A human immediately understands all this, but
to a computer this is quite elusive. One typically
distinguishes different kinds of ambiguity such as
[11]: (a) semantic ambiguity (to what class does
an entity phrase belong, e.g., does “Paris” refer to
a name or a location?), (b) structural ambiguity
(does a word belong to the entity or not, e.g., “Lake
Garda” vs. “Garda”?), and (c) reference ambiguity
(to which real world entity does a phrase refer, e.g.,
does “Paris” refer to the capital of France or one of
the other 158 Paris instances found in GeoNames?).
We represent detected entities and the uncertainty
surrounding them as annotation candidates. Figure 1
contains a table with a few for the example sentence.

NEED typically is a multi-stage process where vo-
luminous intermediary results need to be stored and
manipulated. Furthermore, the dependencies be-
tween the candidates should be carefully maintained.
For example, “Paris Hilton” can be a person or hotel,
but not both (mutual exclusion), and “Paris” can
only refer to a place if “Paris Hilton” is interpreted
as hotel. We believe that a probabilistic database is
well suited for such as task.

Lhttp://geonames.org
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2. Formal framework

The basis of this formalism is the possible world. We
use the term possible world in the following sense: as
long as the winning number has not been drawn yet
in a lottery, you do not known the winner, but you
can envision a possible world for each outcome. Anal-
ogously, one can envision multiple possible database
states depending on whether certain facts are true
or not. For example in Figure 1, a possible world
(the true one) could contain annotations 1, 7, 8, and
10, but to a computer a world with annotations 2, 4,
5, and 6 could very well be possible too. Note that
this differs from the use of the term ‘possible world’
in logics where it means possible interpretations [12,
Chp.6] or as in modal logics [13].

The core of this formalization is the idea that we
need to be able to identify the different possible
worlds so we can reason about them. We do this by
crafting a way to incrementally and constructively
describe the name of a possible world.

2.1. Representation

Our formalization begins with the notion of a
database as a possible world. A database DB € P A
consists of assertions {ay, a1, ..., a,} with a; taken
from A, the universe of assertions. For the pur-
pose of data model independence, we abstract from
what an assertion is: it may be a tuple in a rela-
tional database, a node in an XML database, and
so on. Since databases represent possible worlds,
we use the symbols DB and w interchangeably. A
probabilistic database PDB is a set of databases
{DBy,DBy,...,DB,}, ie., PDB € PP A. Each dif-
ferent database represents a possible world in the
probabilistic database. In other words, if an uncer-
tainty is not distinguishable in the database state,
i.e., if two databases are the same, then we regard
this as one possible world. When we talk about
possible worlds, we intend this to mean ‘all possi-
ble worlds contained in the probabilistic database’
denoted with Wppg.

Implicit possible worlds Viewing it the other way
around, an assertion holds in a subset of all possible
worlds. To describe this relationship, we need an
identification mechanism to refer to a subset of the
possible worlds. For this purpose, we introduce the
method of partitioning. A partitioning w™ splits a
database into n disjunctive parts each denoted with
a label | of the form w=v with v € 1..n. If a world
w is labelled with label I, we say that ‘I holds for
w. Every introduced partitioning w™ is a member of
), the set of introduced partitionings. W; denotes
the set of possible worlds in PDB labelled with I.
L(w™) = {w=v | v € 1.n} is the set of labels for
partitioning w™.

In essence, possible worlds are about choices:
choosing which assertions are in and which assertions
are out. Independent choices may be composed, i.e.,



with k& partitionings w™ we obtain in the worst case
n* possible worlds.

Descriptive assertions and sentences A descriptive
assertion is a tuple (a, ) where ¢ is a descriptive
sentence, a propositional formula describing how the
assertion relates to the possible worlds where the
partitioning labels of the form w=wv are the only
type of atomic sentences. T denotes the empty
sentence logically equivalent with true and L the
inconsistent sentence logically equivalent with false.
The usual equivalence of sentences by equivalence of
proposition formulae applies with the addition that
v £ v —> w=v; Aw=w = L. Note that these
descriptive sentences are a generalized form of the
world set descriptors of MayBMS [14]. The functions
a(t) and @(t) denote the assertion and sentence
component of tuple ¢, respectively. The evaluation
function W (p) determines the set of possible worlds
for which the sentence holds. It is inductively defined
as

W(w=v) = W=y
Wip V)= W(p)u W)
W(pAy) = W(p) N W(y)
W(=p) = Wppp — W(yp)
W(T) = Wppp
W(l)=g

Compact probabilistic database A compact proba-
bilistic database is defined as a set of descriptive as-
sertions and a set of partitionings: CPDB = (D, ).
We consider CPDB well-formed iff all labels used
in D are a member of (2 and all assertions are
present only once hence with one descriptive sen-
tence: Vi, to € Dt # to = a(t) # a(k). A
non-well-formed compact probabilistic database can
be made well-formed by reconstructing €2 from the
labels used in D and merging the ‘duplicate’ tuples
using the following transformation rules

(a,0),(a,9) = (a, 9V ) (1)

In general, ¢ denotes a set of possible worlds. The
most restrictive set of worlds is described by a fully
described sentence ¢ constructed as a conjunction of
labels for each introduced partitioning of 2. Because
of well-formedness and because a possible world is
only distinguished by the assertions it consists of,
it follows that ¢ describes a single possible world.
For example, given that Q = {x2,y3, 22}, one of the
possible worlds is fully described by x=1Ay=2Az=2.

Let L(2) be the set of all possible fully de-
scribed sentences: L(Q) = {hLA...A L | Q =
{wi*, o wp* b AV € 1.k 2 |; € L(w]")}. The set
of possible worlds contained in CPDB can now be
defined as

Wepe = |J Wi(p)

peL(Q)
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Figure 2: Commutative diagram illustrating the rela-
tionships between a set of databases, a probabilistic
database, a compact probabilistic database and the
associated query results.

Note that because each w™ is a partitioning, the
following holds

Y™ € Q: Wpepe = U Wi
leL(w™)

Dependencies Dependencies in the existence be-
tween assertions can be expressed with descriptive
sentences logically combining different labels. Mu-
tual dependency can be expressed by using the same
sentence for the tuples. For example, (a,¢) and
(b, ) describes the situation where a and b both
exist in a possible world or neither, but never only
one of the two. Implication can be expressed by
containment. For example, (a, ) and (b, p A ¢) de-
scribes the situation that whenever a is contained
in a possible world, then b is too. Mutual exclusivity
can be expressed with mutually exclusive sentences,
i.e., (a,9) and (b,1) can never occur together in a
possible world if p Ay = L.

Since each w is a partitioning on its own, they
can be considered as independent choices. For exam-
ple, (a,x=1) and (b, y=1) use different partitionings,
hence the labels establish no dependency between a
and b and thus the existence of a and b is indepen-
dent.

2.2. Querying

The concept of possible worlds means that querying
a probabilistic database should be indistinguishable
from querying each possible world separately, i.e.,
producing the same answers. This is illustrated in
Figure 2 with a commutative diagram. The opera-
tions f and c represent formation and compaction,
respectively. Formation constructs a probabilistic
database from a set of databases. Compaction takes
a probabilistic database and produces a compact
probabilistic database. Both operations are triv-
ially inverted as f’ and ¢/, through unpacking and
enumerating all possible worlds, respectively.

For any query operator @, we define an ezxtended
operator & with an analogous meaning that oper-
ates on a compact representation. It is defined by
& = (@, 7a) where 74 is a function that produces
the descriptive sentence of a result based on the de-
scriptive sentences of the operands in a manner that
is appropriate for operation &. We call an extended
operator sound iff it adheres to the commutative



relations of Figure 2. This means, for example, that
& = (co®oc). Alternatively, starting from the non-
compact probabilistic database PDB, the equality
(co®) = (& oc) must hold for any &.

Observe that we abstract from specific operators
analogously to the way we abstract from the form of
the actual data items. The above defines how to con-
struct probabilistic operators from non-probabilistic
ones. In this way, one can apply this to any query
language in effect defining a family of probabilistic
query languages.

2.3. Probability calculation

One can attach a probability P(w=wv) to each
partition v of a partitioning w™ provided that
S Plw=v) = 1. As is known from the U-
relations model [14] and variations thereof such as
[1], calculating probabilities of possible worlds or the
existence of an assertion among the worlds, can make
use of certain properties that also apply here. For ex-
ample, P(wi=v; A wo=v2) = P(wi1=v1) X P(we=13)
and P(wi=v1 V wa=v2) = P(wi=v1) + P(we=19) iff
w1 # wy. Moreover,

P((a,¢)) =

Y. Pw)

weE Wppp
acw

Y Plw)

we W(p)
= P(p)

Constraining the expressiveness of the descrip-
tive sentences or requiring a normal form may allow
for more efficient exact probability calculations, for
example, [15] describes an efficient approach for cal-
culating the probabilities of positive sentences in
disjunctive normal form. Larger amounts of uncer-
tainty, represented by large amounts of partitionings
involved in the description of a possible world, may
require approximate probability calculation to re-
main feasible. [16] details one such approach to this
problem.

2.4. Comparison

The above-described framework is in essence a gener-
alization of the U-relations model behind MayBMS
[14]. Most other probabilistic database models [3,
Chp.3] are also based on the concept of possible
worlds. Our framework mainly distinguishes itself
from these models on the following aspects
e We have abstracted from what the raw data
looks like by treating them as assertions. In
this way, we obtain data model independence
whereas other models are defined for a specific
data model.
e Our formal foundation is a framework turning
a data model and query language into a proba-
bilistic version, hence we have not defined one
specific model but a family of models.
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e The descriptive sentences represent the uncer-
tainty metadata. As it is nicely separate from
the raw data, we obtain a loose coupling be-
tween data and uncertainty metadata. This
allows the development of a generic uncertainty
management component that can be reused in
systems using different data models. The uncer-
tainty management functionality of existing pro-
totypes is built into the probabilistic database
itself and cannot easily be reused when devel-
oping another.

e Probabilities are separately attached as an ‘op-
tional add-on’ obtaining the desired loose cou-
pling between alternatives and probabilities.

e We allow full propositional logic for constructing
descriptive sentences which results in an expres-
sive mechanism for establishing complex depen-
dencies. For probabilistic XML, [17] showed
that PrXML families allowing cie nodes are
fundamentally more expressive than the other
families while these nodes only allow conjunc-
tions of independent events whereas we allow
any propositional sentence.

3. Illustration of data model independence

We illustrate the data model independence of our
framework by applying it to (1) Datalog, and (2) Re-
lational algebra

3.1. Framework applied to Datalog

Datalog is a knowledge representation and query
language based on a subset of Prolog. It allows the
expression of facts and rules. Rules specify how more
facts can be derived from other facts. A set of facts
and rules is known as a Datalog program.

In the sequel, we first define our Datalog language
and then apply the framework to obtain probabilistic
Datalog by viewing the facts and rules as assertions.
We base our definition of Datalog on [12, Chp.6]
(only positive Datalog for simplicity).

Definition of Datalog We postulate disjoint sets
Const, Var, Pred as the sets of constants, variables,
and predicate symbols, respectively. Let ¢ € Const,
X € Var, and p € Pred. A term t € Term is either
a constant or variable where Term = Const U Var.
An atom A = p(t1,...,t,) consists of an n-ary
predicate symbol p and a list of argument terms
t;. An atom is ground iff Vi € 1..n : t; € Const.
A clause or rule r = (A" <~ Ay,..., A,,) is a horn
clause representing the knowledge that A" is true
if all A; are true. A fact is a rule without body
(A" ). Let vars(r) be the set of variables occurring
in rule r. A set of rules KB is called a knowledge
base or program. The usual safety conditions of pure
Datalog apply.
An example of a Datalog program can be found
below. It determines the country C of a phrase Ph



reKB r= (A« Ay, . A,)

36 : AP0 is ground A Vi € 1.m : KB |= A0 =
-

KB = Ah

Tl=

P P10 Pm SOA/\iel..mgoi

reKB r=(A"& Ay, .. Ay)

36 : Ah9 is ground A Vi € 1..m : KB |; (A0, ;)

¢ =Te(p 01, om) @ EL

KB |= (A0, ')

Figure 3: Definition of Datalog and application of our framework defining |; and 7 (base case with m = 0).

at position Pos if it is of type place and it refers to
an entry in a gazetteer containing the country.

type(paris, posl, place) <
gazetteer(gll, paris, france) <
refersto(paris, posl, gl1)

location(Ph, Pos, C) +
type(Ph, Pos, place), refersto(Ph, Pos, G),
gazetteer(G, Ph, C)

Let 0 = {X1/t1,...,Xn/tn} be a substitution
where X;/t; is called a binding. Af and r6 denote
the atom or rule obtained from replacing each Xj;
occurring in A or r by the corresponding term t;.

Semantic entailment for our Datalog is defined

in Figure 3 (left side of ‘i>) as the Herbrand base:
all ground atoms that can be derived as a logical
consequence from KB.

The three facts of our example are entailed di-
rectly, because their bodies are empty, hence m = 0,
and the heads are already ground such that 6 = &
suffices. The location-rule contains variables. With
6 = {Ph/paris, Pos/posl, G/gll, C/france} or any su-
perset thereof the atoms in the body turn into en-
tailed facts allowing location(paris, posl, france) to
be entailed.

Probabilistic Datalog The approach to obtain Prob-
abilistic Datalog using our framework is by view-
ing the facts and rules as assertions. We use the
notation (A" & Ay,..., A,,) for the tuple (A" «
Ai,..., Ap, o). Note that this not only allows the
specification of uncertain facts, but also uncertain
rules as well as dependencies between the existence
of facts and rules. In this way, the Probabilistic
Datalog we obtain is more expressive than existing
flavors of probabilistic Datalog such as ProbLog [18].

The ‘operation’ in Datalog is entailment. There-
fore, applying our framework means defining proba-
bilistic entailment ’; by defining 7 and weaving it
into the given definition of = (see Figure 3). The
intuition behind the definition is that the descriptive
sentence of an entailed fact is the conjunction of
the sentences of the atoms and rules it is based on,
which should not be ‘false’, i.e., it should not be
equivalent to the sentence L.

Furthermore, probabilistic entailment needs to be
well-formed. We achieve this by defining well-formed

type(paris__hilton, pos1-2, person) <!

type(paris__hilton, pos1-2, hotel) =2

type(paris, posl, place) i type(_, Pos, hotel), contains(pos1, Pos)
type(hilton, pos2, brand) =t type(_, Pos, hotel), contains(pos2, Pos)
gazetteer(gll, paris, france) L

gazetteer(gl2, paris, canada) &

refersto(paris, pos1, g11) %=

refersto(paris, posl, g12) 22

location(Ph, Pos, C) E=
type(Ph, Pos, place), refersto(Ph, Pos, G),
gazetteer(G, Ph, C)

Figure 4: Example of a probabilistic Datalog program

entailment =* using transformation rule 1, i.e.,

VA€ Atom: @4 # 2 = KB (4, \/ o)
R peEd A
where @4 = {¢ | KB = (4,¢)}

Figure 4 contains an elaboration of our example
in probabilistic Datalog. It expresses uncertainty
about (a) whether “Paris Hilton” is person or a
hotel, (b) whether “Paris” is a place and “Hilton”
is a brand but only if they are part of a phrase
that is interpreted as a hotel, (¢) whether a phrase
“Paris” refers to entry gll or gl2 in the gazetteer,
and (d) whether or not our rule for determining the
country is correct in general. Observe that both
(location(paris, posl, france), r=1 Ay=1 Ax=2 A a=1)
and (location(paris, posl, canada), r=1 Ay=1 Ax=2A
a=2) are entailed for this example.

Three kinds of (un)truth A language like probabilis-
tic Datalog is an interesting vehicle to obtain deeper
understanding of important concepts such as truth
of facts that are uncertain. In fact, the language can
express three kinds of untruth

1. A fact A is entailed with an inconsistent sen-
tence ¢ = L. This means that although A
seems logically derivable, its derivation implies
that the world is impossible, i.e., it is true in
none of the possible worlds.

2. A fact A is entailed with a sentence ¢ with
P(p) = 0. This means that A is derived only
for worlds with zero probability.

3. A fact A is not entailed (in any of the possible
worlds). This is the original untruth of Datalog.

The differences between these untruths are rather
subtle but nevertheless existing.



3.2. Framework applied to Relational
Algebra

Relational Algebra is the underpinning of relational
databases. It allows the expression of operations on
data structured as relations containing tuples. The
tuples in a relation are uniform and comply to the re-
lation’s schema which is defined as a set of attributes.
The relations and tuples have a strong likeness to ta-
bles and rows known from SQL databases. Yet they
are not equal: relations are sets of tuples, whereas
tables in SQL are multisets.

Definition of Relational Algebra We postulate a
set of attribute domains Int, Bool, String, etc. Let
R(aty,...,at,) C dom(aty) x --- x dom(at,) be a
relation containing relational tuples r € R with at-
tributes aty, ..., at,, where dom(at;) denotes the do-
main of at; (i € 1..n). Operations include the usual
set operations union (U), intersection (N), and dif-
ference (\) together with selection (o), projection
(m), cartesian product (x), and join (). The usual
restrictions apply, for example, set operations require
the operands to have the same attributes. We define
the relational operators alongside the probabilistic
ones below for easy comparison.

Probabilistic Relational Algebra Using our frame-
work, we obtain probabilistic relational algebra by
viewing relational tuples as assertions. For each op-
erator @, we define & in terms of @ and 74 where the
latter maps descriptive sentences of the operands to
a descriptive sentence of the result. We then ‘weave’
the application of 74, into the definition of the origi-
nal non-probabilistic operators @ (see Figure 5). Let
A(R) = {a(t) | t € R} be the set of assertions (i.e.,
relational tuples) from a probabilistic relation R.

Note that we assume the probabilistic relational
database as well as the result of every operation to
be well-formed by applying transformation rule 1.

Figure 6 contains an example of the application
of probabilistic relational algebra for our running
example. Relation Type is an excerpt of Figure 1.
Using relations RefersTo and Gazetteer we compute
a new relation Locations with possible countries for
the named entities:

Tphrase,pos,country (Op( Type x RefersTox Gazetteer))

where p = (Type.phrase = RefersTo.phrase
A Type.pos = RefersTo.pos
N RefersTo.gazetteer = Gazetteer.id).

4. Discussion

4.1. Optimizations

Scalable uncertainty A probabilistic database not
only needs to be scalable in the volume of data, but
also in the amount of uncertainty in the data. The
latter presents itself both in the number of partition-
ings as well as in the size of the descriptive sentences.

Type

phrase pos | refers to ©

Paris Hilton | 1,2 | person x=1
Paris Hilton | 1,2 | hotel x=2
Paris 1 place y=1
Hilton 2 brand z=1
Gazetteer

id spelling | country | ¢

gll | Paris France T

gl12 | Paris Canada | T

RefersTo

phrase | pos | gazetteer ©

Paris 1 gll a=1

Paris 1 gl2 a=2
Locations

phrase | pos | country ®

Paris 1 France y=1Aa=1AT
Paris 1 Canada | y=1ANa=2AT

Figure 6: Example relations with descriptive sen-
tences. The ‘Locations’ relation is the result of
T phrase,pos,country (Op (Type X RefersTox Gazetteer)).

From our experience with a bio-informatics use case
[6], the number of partitionings can easily grow into
the thousands in real-world applications. The size of
the descriptive sentences is determined by the com-
plexity of the dependencies between assertions, its
low-level representation, and allowed expressiveness.

Propositional logic techniques As propositional
logic is the basis of the descriptive sentence, many
algorithmic techniques can be applied. Equivalence-
based sentence rewriting can be used for, e.g., sim-
plification, normalization, and negation removal (a
negated label can be substituted with an exhaustive
disjunction of the other labels in the partitioning).
An example of optimizations based on disjunctive
normal form is [15]. Negation removal is particularly
useful if the partitionings are restricted to be binary,
which may be sufficient for certain applications and
allows for many other optimizations. Another angle
to consider is constraining the expressiveness of de-
scriptive sentences which allows for optimization of
its representation and manipulation.

During query execution, assertions with an incon-
sistent sentence can be filtered out. This, as well
as the sentence rewriting techniques, can be done
eagerly or lazily depending on the trade-off between
overhead of the technique and resulting gains. Sen-
tence manipulation can be optimized by taking into
account properties of the operations, e.g., selection
is guaranteed to produce a well-formed unmodified
result, so no rewriting or filtering is necessary.

On the implementation level, special physical op-
erators can combine data processing with sentence
manipulation. For example, a merge-join imple-
mentation of 5 could combine joining tuples with
simplification, normalization, and filtering.
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Figure 5: Definitions of 7 and & for probabilistic relational algebra. i, = 6, o X.

Constraining expressiveness The full expressiveness
of propositional logic allows for the expression of rich
dependencies between assertions at the price of com-
putational complexity. Restricting expressiveness
can provide optimization benefits, e.g., disallowing
negation may allow many optimizations that are not
valid in its presence.

The data model and query language may already
place lower requirements on the expressiveness of
the descriptive sentences. For example, the only
logical connective in probabilistic Datalog of Sec-
tion 3.1 is conjunction, and disjunction is necessary
for maintaining well-formedness. Hence, negation
is not needed and also conjunction and disjunction
only appear in particular patterns. Vice versa, re-
strictions on the descriptive sentences may restrict
the query language as well. For example, without
negation the difference between relations cannot be
supported in probabilistic relational algebra.

4.2. Open problems

Alternative data models We have shown how our
framework can be applied to Datalog and relational
algebra. It seems equally possible to apply it to other
data models such as graph, XML, and NoSQL types
of databases. Opportunities still exist in the well-
researched area of probabilistic relational databases.
E.g., in column stores such as MonetDB [19], a rela-
tion is a set of columns; by also viewing columns as
assertions, schema uncertainty as a result of schema
integration [2] can naturally be supported. A data
model’s properties also allows special optimizations,
e.g., in XML implicit dependencies between parent
and child nodes can be exploited for optimization.

295

Efficient probability calculation Calculation of ex-
act probabilities for query results may be computa-
tionally expensive and even exceed processing of the
query itself. This cost can be mitigated by (1) only
calculating probabilities on-demand such as in Trio
[7], (2) approximating probabilities typically given
some error bound, (3) caching probability calculation
results for long shared parts of frequently occurring
descriptive sentences. Furthermore, applying simpler
probabilistic models also allows for more efficient
probability calculation, exact or approximate.

Aggregates Figure 2 determines the semantics of tra-
ditional aggregates such as SUM (X): & = (¢ oXoc).
The difference with the other relational operators
is that their direct computation over a compact
probabilistic database is much less straightforward,
because they may produce an answer that exponen-
tially grows with growing numbers of partitionings.
For example, given a probabilistic relation R =
{{1,x=1),(2,x=1 VvV y=1), (3,x=2 A z=1), (5,y=2)}
with Q@ = {x2,y2,z%}, the answer of %(R) is
{{(2,x=2 A y=1 A z=2),(3,x=1 A y=1), (5,x=2 A
((y=1Az=1)V (y=2Az=2)), (8, y=2A (x=1V (x=2A
z=1)))}. Observe that although not every possible
world results in a different answer, it is an open
problem how to construct sentences for the answers
in an efficient way, i.e., without enumerating worlds.

Note, however, that in many applications it is
not necessary to determine the full set of possible
exact answers with their probabilities. [20] proposes
a variety of answer forms for aggregate queries that
can be (more) efficiently computed and may still be
sufficiently informative such as (a) a single value



representing the expected value of the sum, (b) two
values representing the mean of the sum and its
standard deviation, (c¢) a histogram with probabili-
ties for a predetermined number of answer ranges,
(d) a single answer representing the single most likely
value possibly with its probability, or (e) a top-k of
the k most likely results, and so forth.

Out-of-world aggregations Many systems offer the
expected value as an aggregation function. Further-
more, whereas computing a sum over probabilistic
data has exponential complexity, computing the ex-
pected value of a sum has not. Therefore, such sys-
tems offer combined aggregators such as the ‘esum’.
This poses the questions of: are these truly aggrega-
tors; and what is an aggregate really?

Traditional aggregates operate by aggregating val-
ues over a dimension, possibly in groups, where a
dimension typically is an attribute of a relation. The
possible worlds can be seen as yet another dimen-
sion. For this reason, the expected value is indeed an
aggregator, namely one operating over the possible
worlds dimension. This insight has the potential of
treating all aggregates, including the probabilisticly
inspired ones, uniformly as well as combinations of
aggregators. Note also that asking for the probabil-
ity of a tuple or for an expected value forms a new
class of query operators: they have no counterpart in
the non-probabilistic query language. More research
is needed to explore the implications of this new
class of queries.

5. Conclusions

We revisited the formal foundations of probabilistic
databases by proposing a formal framework that is
based on attaching a propositional logic sentence to
data assertions to describe the possible worlds in
which that assertion holds. By doing so, the formali-
sation (a) abstracts from the underlying data model
obtaining data model independence, and (b) sep-
arates metadata on uncertainty and probabilities
from the raw data.

Data model independence of the framework is
validated by applying it to Datalog and relational
algebra to obtain probabilistic variants thereof: for
every query operator @, we define (a) sentence ma-
nipulation function 7 and (b) probabilistic query
operator &, the latter by weaving 74 into the original
definition of .

In relation to the framework, we discuss open prob-
lems such as alternative data models, probability
calculation, and aggregation, as well as scalability
and optimization issues brought to light due to the
framework’s properties.
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